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We analyze conditions for violation of the Bell inequality in the Clauser-Horne-Shimony-Holt form, focus-
ing on Josephson phase qubits. We start the analysis with maximum violation in the ideal case, and then take
into account the effects of local measurement errors and decoherence. Special attention is paid to configura-
tions of the qubit measurement directions in the pseudospin space lying within either horizontal or vertical
planes; these configurations are optimal in certain cases. Besides local measurement errors and decoherence,
we also discuss the effect of measurement crosstalk, which affects both the classical inequality and the
quantum result. In particular, we propose a version of the BI which is insensitive to the crosstalk.
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I. INTRODUCTION

In 1935 Einstein, Podolsky, and Rosen �EPR� showed in a
classical paper1 that quantum mechanics contradicts the natu-
ral assumption �the “local realism”� that a measurement of
one of two spatially separated objects does not affect the
other one. This “spooky action at a distance”—known as
entanglement—is now recognized as a major resource in the
field of quantum information and quantum computing.2 The
paradox led EPR to conclude that quantum mechanics is an
incomplete description of physical reality, thus implying that
some local hidden variables are needed.

The EPR paradox remained at the level of semiphilo-
sophical discussions until 1964, when Bell contributed an
inequality for results of a spin-correlation experiment,3

which should hold for any theory involving local hidden
variables, but is violated by quantum mechanics. Inspired by
Bell’s idea, in 1969, Clauser, Horne, Shimony, and Holt4

�CHSH� proposed a version of the Bell inequality �BI�, the
generic name for a family of inequalities, which made the
experimental testing of local hidden-variable theories pos-
sible. The main advantage of the CHSH inequality in com-
parison with the original BI is that it does not rely on the
experimentally unrealistic assumption of perfect anticorrela-
tion between the measurement results when two spin-1 /2
particles �in the spin-0 state� are measured along the same
direction. Many interesting experiments5–10 have been done
since then. The results of these experiments clearly show a
violation of the BIs, in accordance with quantum mechanical
predictions.

The BI violation has been mostly demonstrated in experi-
ments with photons;5–7 it has also been shown in experiments
with ions in traps8 and with an atom-photon system;9 a Bell-
type inequality violation has also been demonstrated in an
experiment with single neutrons.10 Experimental violation of
the BI in solid-state qubits would be an important step to-
ward practical quantum information processing by solid-state
devices.11–15 Experiments on observation of the BI violation
in Josephson phase qubits are currently under way.16,17 The-
oretical study related to the BI violation in solid-state sys-
tems has also attracted significant attention in recent
years.18–25

In this paper, we discuss the Bell inequality �in the CHSH
form� for solid-state systems, focusing on experiments with

superconducting phase qubits. We study effects of various
factors detrimental for observation of the BI violation, in-
cluding local measurement errors, decoherence, and interac-
tion between qubits �crosstalk�, and analyze optimal condi-
tions in the presence of these nonidealities.

The paper is organized as follows. In Sec. II we review
the CHSH type of the BI, and also discuss tomography-type
measurements using qubit rotations. In Sec. III we consider
the ideal case and describe all situations for which the BI is
violated maximally. Sections IV–VI are devoted to the ef-
fects of various nonidealities on the observation of the BI
violation. In Sec. IV we discuss the effect of local measure-
ment errors, using a more general error model than in previ-
ous approaches.26–30 Analytical results for maximally en-
tangled states and numerical results for general two-qubit
states are presented. In Sec. V we consider the effect of local
decoherence of the qubits. In Sec. VI we discuss measure-
ment crosstalk, which affects both the BI �since crosstalk is a
classical mechanism of communication between qubits� and
the quantum result. We also propose a version of the BI that
is not affected by the crosstalk. Section VII provides con-
cluding remarks.

II. PRELIMINARIES

A. CHSH inequality

We begin with a brief review of the CHSH
inequality,4,31,32 a type of BI usually used in experiments. Let
us consider a pair of two-level systems �qubits� a and b.
Assuming that a realistic �classical� theory based on local
observables3 holds and there is no communication between
the qubits �i.e., no crosstalk�, the two-qubit measurement re-
sults should satisfy the CHSH inequality4,33

− 2 � S � 2, �1�

where

S = E�a� ,b�� − E�a� ,b��� + E�a��,b�� + E�a��,b��� . �2�

Here a� and a�� �b� and b��� are the unit radius vectors on the
Bloch sphere along the measurement axes for qubit a �b� and

E�a� ,b�� is the correlator of the measurement results:
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E�a� ,b�� = p++�a� ,b�� + p−−�a� ,b�� − p+−�a� ,b�� − p−+�a� ,b�� , �3�

where pij�a� ,b�� �i , j= � � is the joint probability of measure-
ment results i and j for qubits a and b, respectively.

The sum of the probabilities in Eq. �3� equals 1. This can
be used to recast Eq. �2� in the form

S = 4T + 2, �4�

where

T = p�a� ,b�� − p�a� ,b��� + p�a��,b�� + p�a��,b��� − pa�a��� − pb�b�� .

�5�

Here p�a� ,b��= p++�a� ,b��, whereas pa�a���= p++�a�� ,b��
+ p+−�a�� ,b�� �or pb�b��= p++�a� ,b��+ p−+�a� ,b��� is the probability
of the measurement result � for qubit a �or b� irrespective of
the measurement result for the other qubit �in the classical
theory in absence of communication between qubits, pa�a���
is obviously independent of the direction b� and even inde-
pendent of the very fact of the qubit b measurement; simi-

larly for pb�b���. Thus, instead of the probabilities pij, one can
equivalently use the probabilities p, pa, and pb, and the in-
equality �1� can be recast in the equivalent form4

− 1 � T � 0. �6�

Notice that both inequalities �1� and �6� can have some-
what different meanings in different physical situations. In
particular, the results � and � may correspond to the pres-
ence or absence of a detector “click” �so called one-channel
measurement4,34�; in this case a low-efficiency detector sig-
nificantly increases the chance of the result �. Another pos-
sibility is the so-called two-channel measurement, in which
the qubit states � and � are supposed to produce clicks in
different detectors;33 in this case inefficient detection leads to
three possible results: �, �, and no result. Significant inef-
ficiency of the optical detectors leads to the so-called detec-
tor loophole,35,36 which arises because effectively not the
whole ensemble of qubit pairs is being measured. This prob-
lem is often discussed in terms of contrasting the
Clauser-Horne34 �CH� and CHSH interpretations of the in-
equalities, which differ in considering either the whole en-
semble or a subensemble of the qubit pairs. It is important to
mention that in the case of Josephson phase qubits �which
formally belongs to the class of one-channel measurements�
the whole ensemble of qubit pairs is being measured, and
therefore there is no detector loophole �if one avoids17 cor-
rections for measurement errors�, and also no difference be-
tween CHSH and CH interpretations.

B. Tomographic measurements

In some cases, as for Josephson phase qubits, the mea-
surement �detector� axis cannot be physically rotated. How-
ever, instead of the detector rotation, one can rotate the qubit
state.37,38 Let us show the equivalence of the two methods
explicitly, using the example of the phase qubit and assuming
ideal �orthodox� measurement.

The Hamiltonian of the phase qubit in a microwave field
in the subspace of the two lowest states in the qubit potential
well ��0� and ��1� is

Hq = ���q/2����1���1� − ��0���0��

+ ���t�sin��t + 	����0���1� + ��1���0�� , �7�

where � is the Planck constant, �q is the qubit resonance
frequency, � is the microwave frequency, ��t�=d10E�t� /� is
the time-dependent Rabi frequency, d10 is the effective
dipole-moment matrix element, and E�t� is the amplitude of
the microwave field. Transforming to the qubit basis �the
rotating frame� �0�= ��0�, �1�=ei�t��1�, neglecting fast-
oscillating terms in the Hamiltonian �the rotating-wave ap-
proximation�, and assuming the resonance condition �=�q,
we arrive at the Hamiltonian

H�t� =
���t�

2
n� · 
� , �8�

where the unit vector n� = �sin 	 ,−cos 	 ,0� lies in the xy
plane making the angle 	−� /2 with the x axis, whereas 
�
= �
x ,
y ,
z� is the vector of the Pauli matrices.39 Here and
below we associate state �1� ��0�� with the measurement re-
sult � ��� and with the eigenvalue 1 �−1� of 
z, so that 
z

= �1��1�− �0��0�.
As follows from Eq. �8�, the microwave pulse rotates the

qubit state such that the initial density matrix �q becomes
�̃q=UR�qUR

† , where

UR = e−i
n� ·
� /2 = cos�
/2� − in� · 
� sin�
/2�

= � cos�
/2� e−i	 sin�
/2�
− ei	 sin�
/2� cos�
/2�

	 . �9�

Here 
=
t1
t2dt ��t�, where t1 and t2 are the pulse starting and

ending time moments.
The probability of the qubit being found in state �i� is

pi = Tr��i��i��̃q� = Tr�Pi�q� �i = 0,1� . �10�

Here Pi is the projection operator Pi=UR
† �i��i�UR, i.e.,

P1�a�� = 1
2�1 + cos 
 e−i	 sin 


ei	 sin 
 1 − cos 

	 =

1

2
�I + a� · 
� � ,

P0�a�� = I − P1�a�� =
1

2
�I − a� · 
� � , �11�

where I is the identity matrix and a� is the unit vector

a� = �cos 	 sin 
,sin 	 sin 
,cos 
� �12�

defining the measurement axis.
Equations �10� and �11� show explicitly the equivalence

between the qubit and detector rotations. That is, one can
interpret p1 �p0� as the probability of the qubit being found in
the state with the pseudospin parallel �antiparallel� to the
measurement axis a� .

Notice that the microwave phase 	 is naturally defined
modulo 2�, while the Rabi rotation angle 
 can always be
reduced to a 2� range �we will assume −��
���. Never-
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theless, with this restriction there are still two sets of angles
�
 ,	� corresponding to the same measurement direction a� ,
because a� is invariant under the change

�
,	� ↔ �− 
,	 + �� . �13�

It is easy to make a one-to-one correspondence between the
measurement direction a� and angles �
 ,	� by limiting either

 or 	 to a � range �instead of 2��. However, we prefer not
to do that because it is convenient and natural physically to
have a 2� range for one angle when the other angle is fixed.
So, as follows from Eqs. �12� and �13�, the polar �zenith� and
azimuth spherical coordinates of a� are equal to, respectively,

 and 	 when 
�0, and −
 and 	+� when 
�0.

The joint probability of the two-qubit measurement can be
written as

pij�a� ,b�� = Tr�Pi
a�a��Pj

b�b���� , �14�

where � is the two-qubit density matrix, Pi
a= Pi � I, and Pi

b

= I � Pi.

III. MAXIMUM BI VIOLATION: IDEAL CASE

The purpose of this paper is to analyze conditions needed
to observe the BI violation in experiment. Since it is usually
easier to observe an effect when it is maximal, we start the
analysis with the situations where violation of the BI is
maximal.

A. Bell operator and Cirel’son’s bounds

Equations �3� and �14� yield E�a� ,b��=Tr�AB��, where

A = P1
a�a�� − P0

a�a�� = a� · 
� a �15�

and similarly B=b� ·
� b. Here 
� a=
� � I and 
� b= I � 
� , the ei-
genvalues of A and B being �1. Correspondingly, as follows
from Eq. �2�,

S = Tr�B�� , �16�

where the Bell operator40 B is

B = AB − AB� + A�B + A�B� �17�

�here A�=a�� ·
� a and B�=b�� ·
� b�.
The maximum and minimum values of S �so-called

Cirel’son’s bounds41�,

S� = � 2�2, �18�

can be obtained, for example, in the following way.42 Since
the Bell operator B is Hermitian, S� are equal to the maxi-
mum and minimum eigenvalues of B. These eigenvalues can
be found by analyzing the eigenvalues of B2:

B2 = 4 + �A,A���B,B�� = 4 − 4�a� � a�� · 
� a��b� � b�� · 
� b�

�19�

�here the vector product is taken before the scalar product�.
Since the eigenvalues of the Pauli matrices are equal to �1,
the largest eigenvalue of B2 is 8, achieved when a� �a�� and

b� �b��. In this case the maximum and minimum eigenvalues
of B are ��8, thus leading to Eq. �18�. �Both values ��8 are
realized because in this case the other eigenvalue of B2 is 0,
and the sum of all four eigenvalues of B should be equal to
0 since Tr B=0.�

Consider some useful properties of S. As follows from
Eqs. �16� and �17� the value of S is invariant under arbitrary
local unitary transformations Ua and Ub,

� → �Ua � Ub���Ua
†

� Ub
†� , �20a�

if simultaneously A→UaAUa
†, A�→UaA�Ua

†, B→UbBUb
†,

B�→UbB�Ub
†, or, equivalently,

a� → Raa� , a�� → Raa��, b� → Rbb� , b�� → Rbb��,

�20b�

where Ra �Rb� is the rotation matrix corresponding to Ua

�Ub�, so that, e.g., Ua�a� ·
� �Ua
†= �Raa�� ·
� . This invariance is

an obvious consequence of the equivalence between the qu-
bit and detector rotations, discussed in the previous section.
As a result of the invariance, if some state is known to vio-
late the BI for a given configuration of the detectors, one can
obtain many other states and the corresponding detector con-
figurations providing the same BI violation, by using Eqs.
�20� with all possible local rotations.

Note also that B inverts the sign if the pair of vectors a� ,a��

�or b� ,b��� inverts the sign. Correspondingly, for a given state

S → − S if a� → − a� , a�� → − a�� �or b� → − b� ,b�� → − b��� .

�21�

As follows from Eq. �21�, there is a one-to-one correspon-
dence between the classes of detector configurations maxi-
mizing and minimizing S for a given state.

B. Optimal detector configurations for
maximally entangled states

For any given detector configuration satisfying the condi-
tion

a� � a�� and b� � b��, �22�

each of the Cirel’son bounds �18� is achieved for a unique
maximally entangled state.43,44 In contrast, for a given maxi-
mally entangled state there can be many optimal detector
configurations giving the maximal BI violation. To the best
of our knowledge, only the configurations with the detector
axes lying in one plane have been usually considered in the
literature, though generally the detector axes for different
qubits may lie in two different planes. Moreover, the BI vio-
lation has been studied mainly for one of the Bell states2

���� = ��10� � �01��/�2, �23�

���� = ��00� � �11��/�2, �24�

while an arbitrary maximally entangled state can be written
as
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��me� = ���1
a�1

b� + ��2
a�2

b��/�2, �25�

where ���1
k� , ��2

k�
 is an orthonormal basis for qubit k. Our
purpose here is to determine all optimal detector configura-
tions for any maximally entangled state.

1. Singlet state

Let us start by assuming that the qubits are in the singlet

state ��−�. For this state E�a� ,b��= ��−��a� ·
� � � �b� ·
� ���−�
=−a� ·b� , so that �see Eq. �2��

S = a� · �b�� − b�� − a�� · �b� + b��� . �26�

Maximizing this formula over a� and a��, we should choose a�

to be parallel to b��−b� , while a�� should be antiparallel to b��

+b� . Therefore45 a� �a��, since b��−b� and b� +b�� are mutually

orthogonal. Similarly, rewriting S as S=b�� · �a� −a���−b� · �a�
+a���, we can show that maximization of S requires b� �b��. In
this way we easily show that the necessary and sufficient
condition for reaching the upper bound S+=2�2 for the sin-
glet state is

a� � a��, b� = − �a� + a���/�2, b�� = �a� − a���/�2. �27�

Because of the symmetry �21�, the necessary and suffi-
cient condition for reaching the lower bound S−=−2�2 can
be obtained by the inversion of the detector directions for
one of the qubits:

a� � a��, b� = �a� + a���/�2, b�� = �a�� − a��/�2. �28�

Equations �27� and �28� show that for the singlet state the
maximum BI violation requires that the detector axes for
both qubits lie in the same plane. However, the orientation of
this plane is arbitrary, since Eqs. �27� and �28� determine
only the angles between the detector axes.

All configurations maximizing �or minimizing� S for the
singlet state can be obtained from one maximizing �minimiz-
ing� configuration by all possible rotations of the plane con-
taining the detector axes. As the initial maximizing case we
can choose the most standard configuration4,32 when all de-
tector axes are within xz plane,

	a = 	a� = 	b = 	b� = 0, �29�

and the polar �zenith� angles of the detector directions a� , a��,

b� , and b�� are


a = 0, 
a� = �/2, 
b = − 3�/4, 
b� = − �/4. �30�

Then all detector configurations with S=2�2 can be param-
etrized by three Euler angles46 �1, �2, and �3 �0��1,3�2�,
0��2���, which describe an arbitrary rotation of the con-
figuration �29� and �30�.

Similarly, all minimizing configurations �S=−2�2� can be
obtained from the standard xz case �Eq. �29�� with


a = 0, 
a� = �/2, 
b = �/4, 
b� = 3�/4 �31�

by arbitrary rotations of this configuration, characterized by
three Euler angles �1,2,3.

2. General maximally entangled state

Any maximally entangled two-qubit state can be obtained
from the singlet state by a unitary transformation of the basis
of one of the qubits47 �i.e., a one-qubit rotation�. Therefore,
an arbitrary case corresponding to the bounds S�= �2�2
can be reduced to the singlet state considered above by a
unitary transformation Ub of the qubit b basis and simulta-

neous corresponding rotation of the detector axes b� and b��
for the second qubit. Since the transformation Ub can also be
characterized by three Euler angles �1

b, �2
b, and �3

b, an arbi-
trary situation with S=2�2 can be characterized by six inde-
pendent parameters ��1 ,�2 ,�3 ,�1

b ,�2
b ,�3

b�, using the standard
configuration �29� and �30� as a starting point. Similarly, any
situation with S=−2�2 is characterized by the same six pa-
rameters, starting with the xz configuration �31�.

Since these six parameters can describe arbitrary direc-

tions of four measurement axes �a� ,a�� ,b� ,b��� still satisfying

the conditions a� �a�� and b� �b��, it is obvious that any such
four-axis configuration produces S=2�2 for exactly one en-
tangled state and also produces S=−2�2 for another en-
tangled state. Notice that the sign of S can obviously be
flipped by a � rotation of qubit a �or b� around the axis a�

�a�� �b� �b��� instead of the � rotation �21� of its detector
axes. Also notice that six independent parameters for an op-
timal configuration can be alternatively chosen as any pa-
rameters characterizing the four measurement axes, which

are pairwise orthogonal: a� �a�� and b� �b��.

3. Odd states

An important special case is the class of “odd” maximally
entangled states

��� = ��10� + ei��01��/�2 �0 � � � 2�� , �32�

which is of relevance for experiments with Josephson phase
qubits.12 Such states can be obtained �with an accuracy up to
an overall phase factor� from the singlet state ��−� by
unequal rotations of the two qubits around the z axis. In-
deed, since Uz���=e−i�
z/2 rotates a spin 1

2 around the z
axis by angle �, we obtain �Uz��0� � Uz��0+�−�����−�
=−ie−i�/2���, where �0 is arbitrary. Thus, in view of Eq.
�20�, the optimal detector configurations for the odd state
�32� can be obtained from those for ��−� by rotating the
detectors for the qubit b around the z axis by the angle �
−� �notice that the state �32� reduces to the singlet for �
=��. In terms of the parameters 
 and 	, this is equivalent to
the change

	b → 	b + � − �, 	b� → 	b� + � − � . �33�

Thus, for the odd states the class of optimal configurations
maximizing S �as well as the class minimizing S� is charac-
terized by four parameters: �1, �2, �3, and �.

Now let us focus on the optimal configurations with the
detector axes lying in either a “vertical” plane for each qubit
�i.e., a plane containing the z axis� or the “horizontal” �xy�
plane; such configurations will be important in the study of
effects of errors �Sec. IV� and decoherence �Sec. V�.
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To obtain all vertical cases with the maximum BI viola-
tion S=2�2, we start with the standard configuration �29�
and �30� for the singlet, then apply a rotation in the xz plane
by an arbitrary angle C �we can also apply mirror reflection�,
then rotate the resulting configuration around the z axis by an
arbitrary angle 	0,48 and finally apply the � rotation �33�
determined by the phase of the odd state �32�. As a result, the
optimal measurement directions for the qubits a and b gen-
erally lie in different vertical planes,

	a = 	a� = 	0, 	b = 	b� = 	0 + � − � , �34�

while the polar angles corresponding to S=2�2 are

�
a,
a�,
b,
b�� = � �0,�/2,− 3�/4,− �/4� + C , �35�

where 	0 and C are arbitrary angles, while � is determined
by the state �32�. Notice that the signs � correspond to the
possibility of mirror reflection, which we did not have to
consider in the previous subsections because it can be repro-
duced using three-dimensional rotations, while it is a neces-
sary extra transformation in the 2D case.

Similarly, the minimum S=−2�2 for the odd state �32� is
achieved for the vertical configurations within the planes
given by Eq. �34� for the polar angles

�
a,
a�,
b,
b�� = � �0,�/2,�/4,3�/4� + C . �36�

Recall that we define both 
 and 	 modulo 2�, and there-
fore each measurement direction corresponds to two sets of
�
 ,	� �see Eq. �13��. Consequently, the optimal configura-
tions described by Eqs. �34�–�36� can also be described in
several equivalent forms by applying the transformation �13�
to some of the four measurement directions.

As follows from Eq. �34�, the only odd states for which
the optimal vertical configurations lie in the same plane are
the Bell states ��−� �corresponding to �=�� and ��+� �cor-
responding to �=0�. The optimal vertical configurations for
the singlet state ��−� are given by

	a = 	a� = 	b = 	b� = 	0 �37�

and Eqs. �35� and �36�. To describe the optimal vertical con-
figurations for the state ��+�, it is natural to apply the equiva-
lence �13� to the qubit b measurement directions, so that the
angles 	 are still all equal as in Eq. �37�, while the angles 

are given by Eqs. �35� and �36� with flipped signs for the
qubit b, i.e., 
b→−
b and 
b�→−
b�.

Now let us consider the optimal detector configurations in
the horizontal �xy� plane:


a = 
a� = 
b = 
b� = �/2. �38�

All configurations for S=2�2 can be obtained from the stan-
dard configuration �29� and �30� by rotating it into the xy
plane �so that the angles 
 are essentially replaced by the
angles 	�, then applying an arbitrary rotation within the xy
plane and possibly the mirror reflection, and finally applying
the transformation �33� with the state-dependent parameter
�, so that

�	a,	a�,	b + �,	b� + �� = � �0,�/2,�/4,3�/4� + C

�39�

with arbitrary C �the signs � correspond again to the possi-
bility of mirror reflection�.

Similarly, all horizontal configurations corresponding to
S=−2�2 for the odd states are described by the angles

�	a,	a�,	b + �,	b� + �� = � �0,�/2,− 3�/4,− �/4� + C .

�40�

Notice that the application of the equivalence �13� to all four
measurement directions changes � /2 into −� /2 in Eq. �38�,
while Eqs. �39� and �40� do not change, since the corre-
sponding � shift of angles 	 can be absorbed by the arbitrary
parameter C.

IV. LOCAL MEASUREMENT ERRORS

In this section we consider the effects of local �indepen-
dent� measurement errors on the BI violation.

A. Error model

The probabilities of the measurement results for a single
qubit can be written in the form

pi
M = �

m=0

1

Fimpm = Tr�Qi�q� , �41�

where pm are the probabilities that would be obtained by
ideal measurements, Fim is the probability to find the qubit in
the state �i� when it is actually in the state �m�, and operator
Qi=Fi0P0+Fi1P1 contains the projector operators P0,1 �see
Eq. �10��. The operators Qi satisfy the same condition as the
positive operator valued measure �POVM� measurement
operators,2 namely, Qi are positive and Q0+Q1=1. The con-
dition p0

M + p1
M =1 implies that F0m+F1m=1. Hence, the ma-

trix F has two independent parameters, which can be chosen
as the measurement fidelities F0�F00 and F1�F11 for the
states �0� and �1�, so that

p0
M = F0�̃00 + �1 − F1��̃11, p1

M = �1 − F0��̃00 + F1�̃11

�42�

�here �̃ij are the components of the one-qubit density matrix
after the tomographic rotation and 0�F0,1�1�. It can al-
ways be assumed that F0+F1�1, since in the opposite case
the measurement results can be simply renamed, 0↔1; as a
consequence, max�F0 ,F1��1 /2.

Using the assumption that measurement errors for each
qubit can be considered independently of the errors for the
other qubit, the measured probabilities for a qubit pair can be
written in the form31

pij
M = �

m,n=0

1

Fim
a Fjn

b pmn = Tr�Qi
aQj

b�� , �43�

where Fim
k is the matrix Fim for qubit k and Qi

k=Fi0
k P0

k

+Fi1
k P1

k �see Eq. �14��.
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In this section we will discuss the condition for the BI
violation as a function of measurement fidelities F0

k and F1
k.

Sometimes we will limit the analysis to the case of equal
measurement fidelities for both qubits,

Fi
a = Fi

b = Fi; �44�

however, the case of different measurement fidelities for the
two qubits is also of interest. �Different fidelities are espe-
cially of interest when the qubits have different physical
implementations. For instance, in the case of an atom-photon
qubit pair9 the detection efficiency for the atom is nearly
100%, whereas the photon-detector efficiency is significantly
less than 100%.� Notice that for Josephson phase qubits the
trade-off between the fidelities F0

k and F1
k can be controlled in

an experiment12,49 for each qubit individually by changing
the measurement pulse strength.

Several special cases of our error model have been previ-
ously discussed in the literature, starting with the CHSH
paper.4 For example, in the problem of the detector
loophole,35,36 the CH inequality with F0

a=F0
b=1 is often con-

sidered; then F1
k is called the detector efficiency; both the

cases F1
a=F1

b �Refs. 26 and 29� and F1
b�F1

a �Ref. 30� have
been considered. Let us also mention the effect of nonideali-
ties on the BI violation considered for the experiments on
two-photon interference.27,28 The situations of Refs. 27 and
28 formally correspond to the special case of our model with

F0
a = F1

a = Fa, F0
b = F1

b = Fb. �45�

Then the product �2Fa−1��2Fb−1� equals either the
visibility27 or the product of the visibility and the square of
the signal acceptance probability.28

B. General relations for S

The Bell operator �17� can be generalized to the case of
measurement errors. Inserting Eq. �43� into Eq. �3� yields

E�a� ,b��=Tr�ÃB̃��, where

Ã = Q1
a − Q0

a = F1
a − F0

a + �F0
a + F1

a − 1�a� · 
� a, �46a�

B̃ = F1
b − F0

b + �F0
b + F1

b − 1�b� · 
� b. �46b�

Therefore S can be expressed as

S = Tr�B̃�� �47�

via the modified Bell operator

B̃ = ÃB̃ − ÃB̃� + Ã�B̃ + Ã�B̃�, �48�

where Ã� and B̃� are obtained from Ã and B̃ by replacing a�

and b� with a�� and b��, respectively. Notice that B̃ is a Her-
mitian operator and therefore in some cases it is useful to
think about the measurement of S as a measurement of a

physical quantity corresponding to the operator B̃ �even
though this analogy works only for averages�.

It is rather trivial to show50 that in the presence of local
measurement errors the Cirel’son inequality �S��2�2 re-
mains valid �this fact can be proven51 for any POVM-type

measurement�. Moreover, a stricter inequality for �S� �see Eq.
�50� below� can be obtained, using a method similar to that
of Ref. 51. We will prove this inequality for all pure two-
qubit states �= ������, which automatically means that it is
also valid for any mixed state �. Using the notation �O�
=Tr�O��= ���O��� for any operator O, we start with the ob-

vious relation �S�= ��Ã�B̃− B̃���+ �Ã��B̃+ B̃����� ��Ã�B̃− B̃����
+ ��Ã��B̃+ B̃����. The next step is to apply the general inequal-
ity ��O1O2��2� �O1O1

†��O2
†O2� to both terms in the sum �this

inequality is the direct consequence of the Cauchy-Schwartz
inequality ���1 ��2��2� ��1 ��1���2 ��2� for the vectors ��1�
=O1

†��� and ��2�=O2����. In this way we obtain

�S� � ��Ã2���B̃ − B̃��2� + ��Ã�2���B̃ + B̃��2� �49�

�notice that operators Ã, Ã�, B̃, and B̃� are Hermitian�. As the

next step, we notice that the eigenvalues of Ã �as well as

eigenvalues of Ã�� are 2F1
a−1 and 1−2F0

a, which follows
from Eq. �46� and the fact that the eigenvalues of a� ·
� a are

�1. Therefore, �Ã2�� �2Fmax
a −1�2 and �Ã�2�� �2Fmax

a −1�2,
where Fmax

k =max�F0
k ,F1

k�; and so from Eq. �49� we obtain

�S�� �2Fmax
a −1�����B̃− B̃��2�+���B̃+ B̃��2��. Next, since

�x1+�x2��2�x1+x2� for any positive numbers x1 and x2,

and using the relation ��B̃− B̃��2�+ ��B̃+ B̃��2�=2�B̃2+ B̃�2�,

we obtain the inequality �S��2�2Fmax
a −1���B̃2+ B̃�2�. Fi-

nally, using the relations �B̃2�� �2Fmax
b −1�2 and �B̃�2�

� �2Fmax
b −1�2, derived in a similar way as above, we obtain

the upper bound

�S� � 2�2�2Fmax
a − 1��2 Fmax

b − 1� . �50�

This upper bound is generally not exact and can be reached
only in the case when the errors are symmetric in both qubits
�Eq. �45��, leading to Eq. �55� below. While the bound �50�
depends only on the largest measurement fidelity for each
qubit, our numerical results show that the exact bounds S�

shrink monotonically with the decrease of all fidelities, if the
errors are small enough to allow the BI violation �see below�.

A useful expression for S can be obtained from Eqs. �46�
and �47� by separating the terms for the ideal case:

S = 2�−
a�−

b + 2�+
a�−

ba�� · s�a + 2�−
a�+

bb� · s�b + �+
a�+

bS0, �51�

where �+
k =F0

k +F1
k −1,�−

k =F1
k −F0

k, S0 is the value of S in the
absence of errors �Eq. �16��, and s�k is the Bloch vector char-
acterizing the reduced density matrix for the qubit k, i.e.,
�k=Trk��k�= �I+s�k ·
� � /2. Notice that s�a=s�b=0 for a maxi-
mally entangled state and therefore the second and third
terms in Eq. �51� may increase �S� for nonmaximally en-
tangled optimal states. That is why in the presence of errors
the states maximizing and minimizing S are usually non-
maximally entangled26 �see below�.

Notice that, in the presence of errors, S still preserves the
invariance with respect to the local transformations of qubits
and simultaneous rotation of measurement directions de-
scribed by Eqs. �20�. The symmetry described by Eq. �21�
�sign flip of S for the reversal of one-qubit measurement
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directions� is no longer valid; however, it can be easily modi-
fied by adding simultaneous interchange F0↔F1 of one-
qubit fidelities:

S → − S if a� → − a� , a�� → − a��, F0
a ↔ F1

a; �52a�

S → − S if b� → − b� , b�� → − b��, F0
b ↔ F1

b. �52b�

Obviously, S does not change if both transformations �52�
are made simultaneously. As a consequence, the maximum
S+ and minimum S− �optimized over the qubit states and over
measurement directions� are invariant with respect to simul-
taneous interchange of measurement fidelities

F0
a ↔ F1

a, F0
b ↔ F1

b, �53�

while the extremum values change as S+→−S−, S−→−S+ if
only one-qubit fidelity interchange �F0

a↔F1
a or F0

b↔F1
b� is

made. �The corresponding optimal states obviously do not
change.�

In the presence of measurement errors the magnitudes of
the maximum and minimum of S generally differ, S+� �S−�.
However, as follows from the latter symmetry, S+= �S−� �as in
the ideal case� if the two measurement fidelities are symmet-
ric �equal� at least for one qubit:

F0
a = F1

a or F0
b = F1

b. �54�

If the fidelities are symmetric for both qubits �the situa-
tion described by Eq. �45��, then the expression for S given
by Eq. �51� becomes simple, S= �2Fa−1��2Fb−1�S0, and di-
rectly related to the value S0 without measurement errors.
Then the extremum values

S� = � 2�2�2Fa − 1��2Fb − 1� �55�

are obviously achieved for any maximally entangled state
under the same conditions as in Sec. III. Correspondingly,
the requirement for the fidelities for a violation of the BI
is27,28

�2Fa − 1��2Fb − 1� � 2−1/2 � 0.707. �56�

Notice that, when the measurement fidelities for the both
qubits are the same, Fa=Fb=F, Eq. �56� reduces to the
threshold fidelity

F � 0.5 + 2−5/4 � 0.920, �57�

while if the measurement for one of the qubits is ideal �for
example, Fa=1�, then the BI violation requires

Fb � 0.5 + 2−3/2 � 0.854. �58�

C. Analytical results for maximally entangled states

Let us first analyze the extremum values of S for the class
of maximally entangled states �25�. Since in this case s�a

=s�b=0� , we obtain from Eq. �51� that for maximally en-
tangled states

S = 2�F1
a − F0

a��F1
b − F0

b� + �F1
a + F0

a − 1��F1
b + F0

b − 1�S0

�59�

is directly related to the corresponding quantity S0 in the
absence of errors. Therefore the extremum values of S for
maximally entangled states are

S� = 2�F1
a − F0

a��F1
b − F0

b� � 2�2�F1
a + F0

a − 1��F1
b + F0

b − 1� ,

�60�

and they are achieved under the same conditions as discussed
in Sec. III.

When the asymmetry of measurement fidelities is similar
for both qubits �F1

a�F0
a and F1

b�F0
b or both inequalities with

the � sign�, the first term in Eq. �60� is positive, and there-
fore the BI �S��2 can be more strongly violated for positive
S than for negative S. Similarly, if the asymmetries are op-
posite �for example, F1

a�F0
a and F1

b�F0
b�, then it is easier to

violate the BI for negative S. If the fidelities are symmetric at
least for one qubit �Eq. �54��, then the first term in Eq. �60�
vanishes, and therefore S−=−S+, as discussed in the previous
section.

If the fidelities are the same for both qubits, F0
a=F0

b=F0
and F1

a=F1
b=F1, then the positive S is preferable and

S+ = 2�F1 − F0�2 + 2�2�F1 + F0 − 1�2 �61�

�see the dashed lines in Fig. 1�. This value of S+ reaches the
maximum 2�2 when both errors vanish �F0=F1=1� and de-
creases with the decrease of each fidelity in the interesting
region S+�2 �more accurately, as long as S+�4−2�2
�1.17�. The condition for the BI violation in this case is

�F1 − F0�2 + �2�F1 + F0 − 1�2 � 1. �62�

This threshold of the BI violation on the F0−F1 plane is
shown by the lowest dashed line in Fig. 1. It is an arc of the
ellipse �corresponding to S+=2�, which is symmetric with

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
F0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
1

S� � 2 2.2 2.4 2.6 2.8

FIG. 1. Contour plot of S+ �the maximum quantum value of S�
versus the measurement fidelities F0 and F1 �assumed equal for
both qubits�, optimized over all two-qubit states �solid lines�. The
dashed lines show the result of S+ maximization over the maximally
entangled states only �Eq. �61��. The Bell �CHSH� inequality can be
violated when S+�2.
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respect to the line F0=F1 and is centered at F0=F1=0.5.
However, as seen from Fig. 1, this threshold looks quite
close to a straight line on the F0−F1 plane. Notice that in the
case F0=1 the threshold �62� reduces to the best-known
condition4,36

F1 � 2�2 − 2 � 0.828, �63�

while in the case of symmetric error, F0=F1=F, we recover
Eq. �57�.

D. Numerical results

To optimize the CHSH inequality violation in the pres-
ence of measurement errors over all two-qubit states, includ-
ing nonmaximally entangled states, we used numerical cal-
culations. The analysis has been performed in two different
ways �with coinciding results�. First, we searched for the
maximum violation by finding extrema of the eigenvalues of

the modified Bell operator B̃ defined by Eq. �48�. Since B̃ is

a Hermitian operator and S=Tr�B̃��, for fixed measurement

directions �a� ,a�� ,b� ,b��� the maximum and minimum eigen-

values of B̃ are equal to the maximum and minimum values
of S, optimized over the two-qubit states. Therefore, optimi-
zation of the eigenvalues over the measurement directions
gives the extrema of S. Similar method has been previously
used26 for the case of identical local errors �44� with F0=1,
while we apply this method to our more general error model.

The numerical maximization �minimization� of the largest

�smallest� eigenvalue of the Bell operator B̃ has been per-
formed using the software package MATHEMATICA. The full
optimization should be over all four measurement directions

�a� ,a�� ,b� ,b���, described by eight angles total. However, be-
cause of the invariance of S under local transformations, it is

sufficient to optimize B̃ over only two angles: the angle be-

tween a� and a�� and the angle between b� and b��, while the
other angles are kept fixed.

Our numerical results show that in general the optimal
values of these two angles are different from each other;
however, for equal fidelity matrices �Eq. �44�� these angles

are equal, so that a� ·a��=b� ·b��. This result has been obtained
previously26 for the special case F0=1. Our numerical results
also show that S+� �S−� for positive values of the product
�F1

a−F0
a��F1

b−F0
b� and S+� �S−� when this product is negative,

similar to the result for the maximally entangled states �see
discussion after Eq. �60��.

We have checked that the numerical results for S+ and �S−�
obtained via optimization of the eigenvalues of the Bell op-

erator B̃ coincide with the results �see Fig. 1� obtained by our
second numerical method based on the direct optimization of
S. The second method happened to be more efficient numeri-
cally; as another advantage, it provides the optimal measure-
ment directions together with optimal values S+ and S−,
while the Bell-operator method gives only S+ and S−.

In principle, direct optimization of S �for fixed measure-
ment fidelities� implies optimization over the two-qubit den-
sity matrix and over eight measurement directions. However,
there is a simplification. It is obviously sufficient to consider

only pure states, since probabilistic mixtures of pure states
cannot extend the range of S. Moreover, it is sufficient to
consider only states of the form

��� = cos��/2��10� + sin��/2��01� , �64�

since any pure two-qubit states can be reduced to this form
by local rotations of the qubits �which are equivalent to ro-
tations of the measurement directions�; this fact is a direct
consequence of the Schmidt decomposition theorem.2 The
angle � can be limited within the range 0���� because
the coefficients of the Schmidt decomposition are non-
negative. This range can be further reduced to 0���� /2
since � rotation of both qubits about the x axis �or any hori-
zontal axis� exchanges states �10�↔ �01� and therefore corre-
sponds to the transformation �→�−�.

Our numerical optimization of S within the class of two-
qubit states �64� has shown that for nonzero measurement
errors �we considered 2 /3�Fi

k�1� the optimal measure-

ment directions �a� ,a�� ,b� ,b��� always lie in the same vertical
plane �this configuration is described by Eq. �37��. This ver-
tical plane can be rotated by an arbitrary angle about the z
axis �such a rotation is equivalent to an overall phase factor
in Eq. �64��; therefore we can assume 	0=0 in Eq. �37�.
Notice that for the state �64� the vectors s�a and s�b in Eq. �51�
are along the z axis, s�a=−s�b=z� cos �. These vectors are zero
for the maximally entangled state ��=� /2�; then the vertical
configuration is no longer preferential; however, the maxi-
mally entangled state is optimal only when there are no mea-
surement errors.

For the state �64� and vertical configuration �37� of the
detector axes the expression for S has the form

S = 2�−
a�−

b − �+
a�+

b�g − h sin �� + 2 cos ���+
a�−

b cos 
a�

− �−
a�+

b cos 
b� , �65�

where

g = cos 
a cos 
b − cos 
a cos 
b�

+ cos 
a� cos 
b + cos 
a� cos 
b�,

h = sin 
a sin 
b − sin 
a sin 
b� + sin 
a� sin 
b + sin 
a� sin 
b�.

�66�

The numerical maximization and minimization of S in this
case involves optimization over five parameters: �, 
a, 
a�,

b, and 
b�. Nevertheless, in our calculations this procedure
happened to be faster than optimization over only two pa-
rameters in the method based on the Bell operator eigenval-
ues �we used MATHEMATICA in both methods�.

The solid lines in Fig. 1 show the contour plot of maxi-
mum value S+ on the plane F0-F1 for the case when the
measurement fidelities for two qubits are equal �Eq. �44�; in
this case S+� �S−��. Notice that the line for S+=2 ends at the
points26 F0=1, F1=2 /3 and F0=2 /3, F1=1 �strictly speak-
ing, this line corresponds to S+=2+0 since S=2 can be easily
realized without entanglement�. The dashed lines, which cor-
respond to the optimization over the maximally entangled
states only �Eq. �61��, coincide with the solid lines at the
points F0=F1, because in this case the optimum is achieved
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at the maximally entangled states, as follows from the dis-
cussion after Eq. �54�. When F0�F1, the use of nonmaxi-
mally entangled states gives a wider range of measurement
fidelities allowing the BI violation. However, as seen from
Fig. 1, the difference between the solid and dashed lines
significantly shrinks with the increase of S+, so that there is
practically no benefit of using nonmaximally entangled states
for a BI violation stronger than S+�2.4. Notice that the solid
and dashed lines in Fig. 1 are symmetric about the line F0
=F1 since the interchange F0↔F1 does not change S+, as
was discussed after Eq. �52�.

Numerical calculations show that in the case of equal fi-
delity matrices, Eq. �44�, the optimal detector configurations
for a nonmaximally entangled state �64� have a tilted-X

shape: a� =−b�� and a��=−b� . In this case the number of param-
eters to be optimized in �65� reduces from 5 to 3, signifi-
cantly speeding up the numerical procedure.

Notice that each optimal configuration within the class of
states �64� corresponds to a six-dimensional manifold of op-
timal configurations, obtained by simultaneous local rota-
tions of the measurement axes and the two-qubit state �see
discussion in Sec. III B 2�.

V. DECOHERENCE

The detailed analysis of the effects of decoherence will be
presented elsewhere.52 In this section we discuss only some
results of this analysis, and also discuss the combined effect
of local measurement errors and decoherence.

To study effects of decoherence we assume for simplicity
that the qubit rotations are infinitely fast. Thus, we assume
that after a fast preparation of a two-qubit state � there is a
decoherence during time t, resulting in the state ��, which is
followed by fast measurement of �� �including tomographic
rotations�. Now S is given by Eq. �16� �in the absence of
errors� or �47� and �51� �in the presence of errors� where �
should be substituted by ��. To obtain �� we assume inde-
pendent �local� decoherence of each qubit due to the zero-
temperature environment, described by the parameters �k
=exp�−t /T1

k� and �k=exp�−t /T2
k� �here k=a ,b� where T1

k and
T2

k are the usual relaxation times for the qubit k �T2
k �2T1

k�.
As the initial state we still assume the state of the form

�64� �even though in the presence of decoherence this state
actually does not always provide52 the extrema of S�. It can
be shown analytically52 that in the absence of measurement
errors the maximum violation of the BI for the state �64� can
be achieved when the detector axes lie in either a horizontal
�Eq. �38�� or vertical �Eq. �37�� plane �no other detector con-
figuration can give a stronger violation�. In the case of only
population relaxation �T2

k =2T1
k� the horizontal configuration

is better, while in the case of only the T2 effect �T1
k =�� the

vertical configuration is better.
When local measurement errors are considered together

with decoherence, the optimal detector configurations may
be neither vertical nor horizontal. To elucidate this fact, note
that in Eq. �51� with � replaced by �� the vectors s�a and s�b
remain vertical in the presence of decoherence. As a result,
when in the absence of errors the optimal configuration is
horizontal, measurement errors may make the optimal detec-

tor axes to go out of the horizontal plane. Note, however, that
for some parameter ranges the vertical and horizontal con-
figurations are still optimal.

In numerical calculations we should optimize S over eight
parameters, � and seven detector angles �one of the angles 	
can be fixed because of the invariance of S under identical
rotations of the qubits around the z axis�. We have performed
such optimization for a few hundred parameter points,
choosing the measurement fidelities Fi

k and decoherence pa-
rameters �k and �k randomly from the range �0.7,1�. For
many �more than half� of the parameter points the optimal
configuration was still found to be either vertical or �in a
much smaller number of cases� horizontal. Even when the
optimal configuration was neither vertical nor horizontal, we
found that restricting optimization to only the vertical and
horizontal configurations gives a very good approximation of
the extrema S� �within 0.01 for all calculated parameter
points�. This restriction significantly speeds up the calcula-
tions, since we need to optimize over only five parameters
instead of eight parameters.

Assuming initial state �64� and replacing � by �� in Eq.
�47� we obtain

S = 2�−
a�−

b + �+
a�+

b��1 − �a − �b − ��a − �b�cos ��g

+ �a�bh sin �
 + 2�+
a�−

b��a + �a cos � − 1�cos 
a�

+ 2�−
a�+

b��b − �b cos � − 1�cos 
b, �67�

when the detector axes are in a vertical plane �g and h are
defined in Eq. �66��, and

S = 2�−
a�−

b + �+
a�+

b�a�b sin ��cos�	a − 	b� − cos�	a − 	b��

+ cos�	a� − 	b� + cos�	a� − 	b��� �68�

for a horizontal detector configuration.
To find the extrema of S within the class of vertical con-

figurations, Eq. �67� should be numerically optimized over
the parameter � and four angles 
. The optimization of S
within the class of horizontal configurations is much simpler,
because the term in the square brackets in Eq. �68� can be
optimized independently of �. This optimization is exactly
the same as in the ideal case �see Eqs. �39� and �40� with
�=0�; therefore the term in the square brackets has extrema
�2�2, and therefore the extrema of Eq. �68� are reached at
�=� /2 �maximally entangled state�, thus yielding a rather
simple formula

S� = 2�−
a�−

b � 2�2�+
a�+

b�a�b, �69�

which depends only on the T2 relaxation and measurement
fidelities.

For the numerical example shown by solid lines in Fig. 2,
we assume that decoherence is identical for the two qubits
and choose �a=�b=0.96 and �a=�b=0.94, which corre-
spond to realistically good values for phase qubits: T1
�450 ns, T2�300 ns, and t�20 ns. We also assume identi-
cal errors for both qubits, Eq. �44�, which implies S+� �S−�
�as in the absence of decoherence�, so in Fig. 2 we show the
contour plot only for S+. We have found that for these deco-
herence parameters the vertical detector configuration is bet-
ter than any other configuration �assuming initial state �64��
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for any measurement fidelities in the analyzed range �0.8
�F0,1�1�. Notice that, for the assumed decoherence param-
eters S+=2.50 in the absence of measurement errors, BI vio-
lation requires F�0.947 �for F0=F1=F�, which should be
compared to the threshold F�0.920 in the absence of deco-
herence.

Let us mention that the error model previously discussed
in relation to the BI violation in two-photon interference53

can be shown to be formally equivalent to the special case of
our model with pure dephasing �T1

k =�� and identical errors
with F0=1. Then our quantities F1 and �a�b correspond, re-
spectively, to the detector efficiency and visibility in Ref. 53.
The case of pure dephasing in the absence of errors has also
been considered in connection with the BI violation in me-
soscopic conductors.21

VI. MEASUREMENT CROSSTALK

The nonidealities discussed above are common for many
types of qubits. Now let us discuss a more specific type of
error: the measurement crosstalk for Josephson phase
qubits.12,54 The crosstalk error originates from the fixed �ca-
pacitive� coupling between the qubits, which is still on in the
process of measurement. The mechanism of the crosstalk is
the following.12 If the measurement outcome for the phase
qubit a is 1, then this qubit is physically switched to a highly
excited state �outside the qubit Hilbert space�, and its dissi-
pative oscillating evolution after the switching affects the
qubit b. As a result, the extra excitation of the qubit b may
lead to its erroneous switching in the process of measure-
ment, so that instead of the measurement outcome 1,0 we
may get 1,1 with some probability pc

a. Similarly, because of
the crosstalk from the qubit b to the qubit a, we may obtain
the measurement result 1,1 instead of 0,1 with some prob-
ability pc

b. The values of pc
a and pc

b significantly depend on
the timing of the measurement pulses applied to the qubits.12

If the qubit a is measured a few nanoseconds earlier than the

qubit b, then pc
a� pc

b; if the qubit b is measured first, then
pc

a� pc
b. In the case when the measurement pulses are prac-

tically simultaneous, the crosstalk probability becomes sig-
nificantly lower and pc

a� pc
b.

Let us model the crosstalk in the following simple way.
Even though physically the crosstalk develops at the same
time as the measurement process and its description is quite
nontrivial,54 we will assume �for simplicity� that the
crosstalk effect happens after the “actual” measurement
�characterized by measurement fidelities as in Secs. IV and
V�, so that the only effect of the crosstalk is the change of the
outcome 1,0 into 1,1 with probability pc

a and the change of
the outcome 0,1 into 1,1 with probability pc

b. Moreover, we
assume that the probabilities pc

a and pc
b do not depend on the

measurement axes �a� , b� , etc.�.
Notice that the measurement crosstalk obviously violates

the fundamental assumption of locality, on which the BI is
based �so, strictly speaking, the BI approach is not applicable
in this situation�. In this section we discuss the modification
of the classical bound for S, taking the crosstalk into account
�this bound is now model dependent, in contrast to the usual
BI�, and we also analyze the effect of the crosstalk on the
quantum result for S�. In addition, we discuss a simple
modification of the experimental procedure, which elimi-
nates the effect of crosstalk by using only the “negative re-
sult” outcomes.

A. Modified Bell (CHSH) inequality

First, let us briefly review the derivation of the CHSH
inequality, presented in Ref. 32. In a local realistic theory

S =� s���F���d� , �70�

where F��� is the distribution of the hidden variable � and

s��� = A��,a��B��,b�� − A��,a��B��,b��� + A��,a���B��,b��

+ A��,a���B��,b��� . �71�

Here the measurement outcomes A�� ,a�� and B�� ,b�� can
take only the values �1, depending on the hidden variable �
and the detector orientations for the qubits a and b. �Notice
that in Secs. III and IV the notation A and B was used for
operators; now they are classical quantities. Also notice that
the outcome value −1 is associated with the result 0.� It is
easy to check that s���= �2 under the locality assumption:

the result A�� ,a�� does not depend on the orientations b� of
the qubit b, and vice versa; similarly, F��� does not depend

on a� and b� . After integration in �70�, this leads to the CHSH
inequality �1�.

In our model the measurement crosstalk cannot change
the positive product of outcomes AB=1; however, it changes
AB=−1 into AB=1 with the probability pc

a��� if A=−B=1 or
with probability pc

b��� if A=−B=−1. �The locality assump-
tion is obviously violated, since the value of A now depends

not only on � and a� but also on B and thus implicitly on b�;
similarly for B.� Notice that we assume that the crosstalk

0.8 0.85 0.9 0.95 1
F0

0.8

0.85

0.9

0.95

1

F
1

S� � 2 2.2 2.4

FIG. 2. Contour plot of the maximum value S+ versus the mea-
surement fidelities F0 and F1 for the initial state �64� in the presence
of decoherence with �a=�b=0.96 and �a=�b=0.94, in the absence
�solid lines� or presence �dashed lines� of symmetric crosstalk with
pc=0.1. Solid and dashed lines coincide for S+=2.
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probabilities pc
a and pc

b may in principle depend on � �this is
a slight generalization of the more natural �-independent
model for pc

a and pc
b�.

The random change from AB=−1 to AB=1 due to the
crosstalk leads to the modification of the CHSH inequality
�1�. Here we mention only the main points of the derivation
of the modified CHSH inequality; the details are in the Ap-
pendix. We start by fixing � and considering all possible
changes of the quantity s��� in Eq. �71� due to the crosstalk,
thus obtaining the new values of s together with their prob-
abilities for each of 16 realizations of the vector C
= �A ,A� ,B ,B��. It is easy to see that due to the crosstalk s���
can get the values �4, which are outside the limits �2.
Averaging the value s��� over the crosstalk scenarios and
then maximizing and minimizing the result over 16 realiza-
tions of the vector C, we get

− 2 + 4 min�pc
a���,pc

b���
 � �s���� � 2 + 2�pc
a��� − pc

b���� .
�72�

Finally, averaging this result over �, we obtain the modified
CHSH inequality

− 2 + 4 min�pc
a,pc

b
 � S � 2 + 2�pc
a − pc

b� , �73�

which is the main result of this subsection.
Let us consider two special cases. For a symmetric

crosstalk, pc
a= pc

b= pc, the inequality �73� becomes

− 2 + 4pc � S � 2, �74�

while for a fully asymmetric crosstalk, pc
b=0, it becomes

− 2 � S � 2 + 2pc
a �75�

�similarly for pc
a=0�.

It is interesting to notice that the inequality in the sym-
metric case is more restrictive than the BI �1� �“easier” nega-
tive bound and no change of the positive bound�. This is
actually quite expected because in the limiting case pc=1 the
crosstalk makes all AB products equal 1, so that S=2 always,
as also follows from Eq. �74�. In contrast, for the fully asym-
metric crosstalk the inequality �75� is less restrictive than �1�
�“harder to violate” positive bound and no change of the
negative bound�. In the case of a finite crosstalk asymmetry,
both the positive and negative bounds change �Eq. �73��.

Let us emphasize that in contrast to the derivation of the
original CHSH inequality, s��� may be significantly outside
of the range �−2,2�; it can have the values s���= �4 for any
�symmetric or asymmetric� crosstalk. So the fact that the
lower bound for S never decreases and the upper bound in-
creases only slightly for small crosstalk is due to the statis-
tical averaging of the random increase and decrease of s���
due to the crosstalk.

B. Quantum calculation of S

In the quantum case the crosstalk changes the measure-
ment probabilities pij→pij

C as

p00
C = p00, p10

C = �1 − pc
a�p10, p01

C = �1 − pc
b�p01,

p11
C = p11 + pc

ap10 + pc
bp01. �76�

Then using the definitions �2� and �3� we obtain the result
that the measured value of S becomes

SC = 2p̃c + �1 − p̃c�S + 2�pc
a − pc

b��pb�b�� − pa�a���� , �77�

where p̃c= �pc
a+ pc

b� /2, while S, pa�a���, and pb�b�� are the
quantities obtained in the absence of crosstalk �pa�a��� and

pb�b�� are defined after Eq. �5��.
In a general case the maxima and minima S�

C of Eq. �77�
can be found numerically. To estimate the effect of the
crosstalk, let us calculate Eq. �77� for a maximally entangled
state in the absence of errors and decoherence. Then pa�a���
= pb�b��=1 /2, and using S�= �2�2 we obtain

S+
C = 2�2 − �2�2 − 2�p̃c, S−

C = − 2�2 + �2�2 + 2�p̃c.

�78�

As we see, both extrema are affected by the crosstalk, mak-
ing the range narrower from both sides; however, the lower
boundary is affected much more strongly than the upper
boundary. Comparing Eq. �78� with the modified CHSH in-
equality �73�, we see that the lower bound shifts up for the
quantum result always faster than for the classical bound;
therefore the gap between the quantum and classical bounds
always shrinks due to the crosstalk. The classical-quantum
gap at positive S shrinks from both sides due to the crosstalk.

In the case of symmetric crosstalk, pc
a= pc

b= pc, we can
easily consider nonmaximally entangled states, measurement
errors, and decoherence, since Eq. �77� in this case reduces
to SC=2pc+ �1− pc�S. Therefore, S�

C are simply related to the
values S� without crosstalk �but with measurement errors
and decoherence�:

S�
C = 2pc + �1 − pc�S� �79�

�a similar dependence was used in Eq. �78��. A violation of
the upper bound of the modified CHSH inequality �74� can
be observed when S+

C=2pc+ �1− pc�S+�2, which yields S+

�2, while a violation of the lower limit in Eq. �74� requires
S−

C=2pc+ �1− pc�S−�−2+4pc, which yields S−�−2. Quite
surprisingly, the symmetric crosstalk does not change the
conditions for the BI violation. �Of course, the violation of
the increased lower bound is not as convincing psychologi-
cally as the violation on the increased upper bound.�

Let us discuss the combined effect of local errors, deco-
herence, and symmetric crosstalk for the numerical example
considered in Sec. V, assuming symmetric crosstalk with pc
=0.1. Now for the state �64� in the absence of local measure-
ment errors �F0=F1=1� we get S+

C=2.45, which is slightly
less than the value S+=2.50 obtained in the absence of the
crosstalk. The dependence of S+

C on the measurement fideli-
ties F0 and F1 in this case is illustrated by the dashed lines in
Fig. 2. In accordance with the above discussion, the solid
line for S+=2 and the dashed line for S+

C=2 coincide �the BI
violation boundary is not affected�, while the comparison of
the solid and dashed lines for S+=2.2 and 2.4 shows that the
crosstalk makes an observation of a given BI-violating value
of S+ more difficult.
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Figure 3 shows a similar contour plot on the F0−F1 plane
for the lowest quantum value S−

C assuming the same param-
eters as in Fig. 2. Comparing Figs. 2 and 3, we see that it is
more difficult to violate the lower classical bound �even
though it is now only −1.6� than the upper classical bound of
2. This is because we assumed the same measurement fideli-
ties for both qubits, that generally shifts the quantum result
up �as in Eq. �60��. Notice that in Fig. 3 the reference bound
of −2 can still be violated, though only for almost perfect
fidelities.

C. Elimination of the crosstalk effect

Slight modification of the CHSH inequality �1� can make
it insensitive to the crosstalk. The main idea is to use only
experimental outcomes with the result 0, when a qubit does
not switch, and therefore the crosstalk does not occur. Such
negative-result �null-result� experiments with Josephson
phase qubits are very interesting from the quantum point of
view;37,55 however, here we are interested only in the classi-
cal consequence �or rather absence of it� for a measurement
with a null result.

Instead of the inequality �1� let us use the equivalent in-
equality �6�, and let us change the definition of T in Eq. �5�
by interchanging the measurement outcomes 1 and 0. Then
by symmetry the inequality �6� is still valid, so we get the
classical bounds

− 1 � T̃ � 0 �80�

for

T̃ = p00�a� ,b�� − p00�a� ,b�� � + p00�a�� ,b��

+ p00�a�� ,b�� � − p0�a�� � − p0�b�� , �81�

where the probability p0�a�� � is for measuring the qubit a

only �without measuring the qubit b�, while p0�b�� is for mea-
suring only the qubit b.

With this simple modification, the CHSH inequality be-
comes insensitive to the mechanism of the measurement
crosstalk12,54 considered in this section. Notice, however, that
in performing experiment in this way it is still important to
check the absence of a direct crosstalk �due to the measure-
ment pulse itself�. This can be done by applying a measure-
ment pulse to the well-detuned qubit b �so that it cannot
switch� and checking that this does not affect switching
probabilities for the qubit a �and similarly for a interchanged
with b�.

VII. CONCLUSION

In this paper, we have considered the conditions for the
violation of the BI in the CHSH form4 for the entangled pairs
of solid-state qubits, when instead of the rotation of optical
polarizers �detectors� we have to rotate the states of two qu-
bits before the measurement, which itself is always per-
formed in the logical z basis ��0�,�1�� for each qubit. While
most of our results are applicable to many types of qubits,
we have focused on experiments with Josephson phase
qubits.49 We have analyzed the BI violation for the ideal case
as well as in the presence of various nonidealities, including
local measurement errors, local decoherence, and measure-
ment crosstalk.

In the ideal case the maximum violation of the BI �S�

= �2�2, while the classical bound is �S��2� can be realized
for any maximally entangled state. The optimal configuration
of the measurement directions in this case can be realized
with three degrees of freedom for each maximally entangled
state �the measurement direction in our terminology actually
refers to the qubit rotation before the measurement�. How-
ever, in the presence of nonidealities there is typically less
freedom in choosing the optimal configuration. For the odd
two-qubit states involving superpositions �64� of the states
�01� and �10�, we have focused on the vertical measurement
configurations, for which all measurement directions

�a� ,a�� ,b� ,b��� are within the same vertical plane of the Bloch
sphere, and the horizontal configuration, for which the four
measurement axes are within the x-y plane.

The qubit measurement with finite local errors �character-
ized by the fidelities F0 and F1 for each qubit� shrinks the
quantum range for S. We have found that for a maximally
entangled state the BI violation is still possible when the
classical bounds �2 are exceeded by the extrema of the
quantum result given by Eq. �60�. In particular, when two
qubits have the same fidelities, the violation condition is
given by Eq. �62� and shown by the lowest dashed line in
Fig. 1; it can be crudely approximated by the condition �F1

+F0� /2�0.92. A significantly softer violation condition can
be obtained when allowing the two-qubit state to be non-
maximally entangled;26 this condition is shown by the lowest
solid line in Fig. 1. However, the trick of using a nonmaxi-
mally entangled state does not help much when we need a BI
violation with a significant margin �not just barely�; this can
be seen by comparing the solid and dashed lines in Fig. 1.
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FIG. 3. Contour plot of the quantum minimum S−
C versus the

measurement fidelities F0 and F1 �the same for both qubits� opti-
mized over the states �64�. We assume symmetric crosstalk with
pc=0.1 and decoherence parameters �a=�b=0.96 and �a=�b

=0.94 �the same as for Fig. 2�. The classical bound is shifted from
−2 to −1.6 by the crosstalk.
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For nonmaximally entangled odd two-qubit states �64� in the
presence of local measurement errors, the vertical measure-
ment configuration is found to be preferable in comparison
with other configurations.

Analyzing the effect of local decoherence of the qubits for
the odd two-qubit states �64�, we have found that either ver-
tical or horizontal configuration of the measurement direc-
tions is optimal, depending on the parameters. In particular,
in the case of population �energy� relaxation in the z basis,
the horizontal configuration is optimal, while for pure
dephasing the vertical configuration is optimal. In the pres-
ence of both decoherence and local measurement errors, the
optimal configuration can be neither horizontal nor vertical;
however, restricting optimization to only these two classes of
configurations gives a very good approximation of the ex-
trema S�. Obviously, both the decoherence and measurement
errors make the observation of the BI violation more diffi-
cult.

We have also analyzed the effect of the measurement
crosstalk12 which plays an important role in measurement of
capacitively coupled phase qubits. Since the crosstalk is a
mechanism of classical communication between the qubits,
strictly speaking the BI is inapplicable. However, for a par-
ticular model of the crosstalk it is possible to derive a modi-
fied CHSH inequality �see Eq. �73��. In particular, we have
found that symmetric crosstalk does not change the upper
classical bound but increases the lower classical bound. The
crosstalk also affects the quantum bounds, which are given
by Eq. �78� for the maximally entangled state in the other-
wise ideal case with arbitrary crosstalk and by Eq. �79� for an
arbitrary case but assuming a symmetric crosstalk. Quite un-
expectedly, the symmetric crosstalk does not change the
threshold condition for the observation of the BI violation.
However, the crosstalk always reduces the gap between the
classical and quantum bounds and makes observation of the
BI violation with a finite margin more difficult. It is impor-
tant to mention that the detrimental effect of the crosstalk can
be eliminated by a slight change of the CHSH inequality �by
using only negative-result outcomes�, which makes it insen-
sitive to the crosstalk �see Eqs. �80� and �81��.

We have performed numerical simulations with param-
eters similar to the experimental values for the best present-
day experiments with Josephson phase qubits.17,38 Our re-
sults �see Fig. 2� show the possibility of CHSH inequality
violation with a significant margin even without further im-
provement of the phase qubit technology.
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APPENDIX A: DERIVATION OF THE INEQUALITY (73)

To derive the inequality �72�, we fix � and use the abbre-
viated notation s=s���, pc

a= pc
a���, pc

b= pc
b���, A=A�� ,a��,

A�=A�� ,a��, and similarly for B and B�. Let us introduce the

vectors C= �A ,A� ,B ,B�� and A= �AB� ,AB ,A�B ,A�B��, so
that s=A · �−1,1 ,1 ,1�. The vector C can assume 16 values,
whereas without the crosstalk A can take eight values, since
the number of pluses or minuses in A is even. Each pair of C
and −C yields one value of A. Generally, the crosstalk effect
differs for C and −C, except for the symmetric case, pc

a= pc
b

= pc, when the crosstalk depends only on A. We start the
analysis with the symmetric case and then consider the gen-
eral asymmetric case.

1. Symmetric crosstalk

It is easy to check that without crosstalk s=2 or −2. To
obtain the upper bound of the modified BI, we consider four
values of A corresponding to s=2. The crosstalk cannot
change A= �1,1 ,1 ,1�; hence we discuss three other values,
�−1,−1,1 ,1�, �−1,1 ,−1 ,1�, and �−1,1 ,1 ,−1�. For any of
these vectors, the crosstalk makes s take the values 0, 2, and
4 with the probabilities pcqc, qc

2+ pc
2, and pcqc, respectively,

where qc=1− pc. Indeed, the change of any −1 to 1 in A
occurs with the probability pcqc, yielding s=0 for the change
of the first −1 in A and s=4 for the change of any other −1,
whereas qc

2+ pc
2 is the probability of no change or change to

A= �1,1 ,1 ,1�, both cases yielding s=2. Thus, though now s
can achieve the maximal mathematically possible value 4, it
is easy to see that the maximal value for the average of s
over crosstalk is still �s�max=2.

To obtain the lower limit of the inequality, we consider
four values of A corresponding to s=−2 in the absence of
the crosstalk. Consider first A= �−1,−1,−1,−1�. This vector
can be changed by the crosstalk to any of 16 possible com-
binations of four pluses and minuses, yielding the values
s=−4,−2,0 ,2 ,4 with the probabilities pcqc

3, qc
4+3pc

2qc
2,

3pcqc
3+3pc

3qc, 3pc
2qc

2+ pc
4, and pc

3qc, respectively �note that the
sum of the above probabilities equals 1�. The above prob-
abilities can be easily obtained if one takes into account that
s=−4 results from the change of only the first −1 in A,
s=−2 occurs when either A have not changed or the first and
one of the last three components have changed, s=0 occurs
when the crosstalk results in A with the first and two other
components equal to 1 or −1, s=2 occurs when two of the
last three components or all the components of A change
sign, and s=4 results from changes of all the last three com-
ponents in A. As a result, in the case when only A= �−1,
−1,−1,−1� is realized, we obtain

�s� = − 2 + 4pc. �A1�

Finally, let us consider the values A= �1,−1,−1,1�, �1,1 ,
−1 ,−1�, and �1,−1,1 ,−1�. For any of these vectors the
crosstalk makes s take the values −2, 0, and 2 with the prob-
abilities qc

2, 2pcqc, and pc
2, respectively. These probabilities

follow from the fact that s=−2 when A is not changed, s
=0 results from the change of only one component −1, and
s=2 results from the change of both negative components. It
is easy to check that for any of the above three vectors, we
again obtain Eq. �A1�.

Combining the results for the upper and lower bounds, we
obtain the inequality −2+4pc� �s��2, the average of which
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over � yields the modified BI for the symmetric crosstalk
given by Eq. �74�.

2. Asymmetric crosstalk

As mentioned above, when pc
a�pc

b, the crosstalk yields
different results for C and −C. However, recalling that the
change AB=−1→1 occurs with the probability pc

a if A=1
and B=−1 or with the probability pc

b if A=−1 and B=1, we
can obtain a symmetry relation for the probability of a
change of A with a given C to some A� as a function of pc

a

and pc
b:

PA→A��pc
a,pc

b,C� = PA→A��pc
b,pc

a,− C� . �A2�

To extend the results of Appendix A 1 to the general case of
asymmetric crosstalk, we should reconsider all possible
changes of A discussed in Appendix A 1, taking into account
the two vectors C and −C corresponding to each A. As a

result, the probability of each value of s obtained above is
replaced by two probabilities, which differ from each other
by the change pc

a↔pc
b �cf. Eq. �A2��.

It happens that for most combinations A the probability
obtained in Appendix A 1 is replaced by two probabilities
just by replacing pc with pc

a or with pc
b. One of two excep-

tions is the case A= �−1,1 ,−1 ,1�. Then for C= �−1,1 ,
−1 ,1� the quantity s=2 changes to s=0,2, and 4 with the
probabilities qc

apc
b, qc

aqc
b+ pc

apc
b, and pc

aqc
b, respectively, where

qc
k=1− pc

k. This yields �s�=2+2�pc
a− pc

b�. The other value of
�s� �corresponding to C= �1,−1,1 ,−1�� is obtained from this
formula by the substitution pc

a↔pc
b, so that �s�=2+2�pc

b

− pc
a�. The other exception is A= �1,−1,1 ,−1�. In this case

we obtain �s�=−2+2�pc
a+ pc

b� �for both possible values of C�.
Finally, by choosing the worst cases for the lower and upper
bounds for �s� and averaging the result over �, we obtain
Eq. �73�.
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